Unravelling the Effects of the Mutation m.3571insC/MT-ND1 on Respiratory Complexes Structural Organization

نویسندگان

  • Luisa Iommarini
  • Anna Ghelli
  • Concetta Valentina Tropeano
  • Ivana Kurelac
  • Giulia Leone
  • Sara Vidoni
  • Anne Lombes
  • Massimo Zeviani
  • Giuseppe Gasparre
  • Anna Maria Porcelli
چکیده

Mammalian respiratory complex I (CI) biogenesis requires both nuclear and mitochondria-encoded proteins and is mostly organized in respiratory supercomplexes. Among the CI proteins encoded by the mitochondrial DNA, NADH-ubiquinone oxidoreductase chain 1 (ND1) is a core subunit, evolutionary conserved from bacteria to mammals. Recently, ND1 has been recognized as a pivotal subunit in maintaining the structural and functional interaction among the hydrophilic and hydrophobic CI arms. A critical role of human ND1 both in CI biogenesis and in the dynamic organization of supercomplexes has been depicted, although the proof of concept is still missing and the critical amount of ND1 protein necessary for a proper assembly of both CI and supercomplexes is not defined. By exploiting a unique model in which human ND1 is allotopically re-expressed in cells lacking the endogenous protein, we demonstrated that the lack of this protein induces a stall in the multi-step process of CI biogenesis, as well as the alteration of supramolecular organization of respiratory complexes. We also defined a mutation threshold for the m.3571insC truncative mutation in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1), below which CI and its supramolecular organization is recovered, strengthening the notion that a certain amount of human ND1 is required for CI and supercomplexes biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment.

Mitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness, having been found in virtually all cancer types and most commonly affecting genes encoding mitochondrial complex I (CI) subunits. However, it is still unclear whether they exert a pro- or anti-tumorigenic effect. We here analyzed the impact of three homoplasmic mtDNA mutatio...

متن کامل

Lack of Association of Mitochondrial A3243G tRNALeu Mutation in Iranian Patients with Type 2 Diabetes

Many kinds of mutations in mitochondrial (mt) DNA have been reported to be related to the development of Diabetes Mellitus (DM), this type of diabetes has also been shown to be influenced by other genetic factors and/or environmental factors. Among them, tRNALeu(UUR) and its adjacent mtDNA NADH dehydrogenase subunit 1(ND1) region within the mt genome are linked to high susceptibility to DM. A p...

متن کامل

جهش جدید هموپلاسمیک T4216C میتوکندریایی در افراد ایرانی مبتلا به بیماری فردریش اتاکسیا

Introduction: The mitochondrial defects in Friedreich ataxia (FRDA) have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA) could be considered as a c...

متن کامل

A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function.

The oncogenic versus suppressor roles of mitochondrial genes have long been debated. Peculiar features of mitochondrial genetics such as hetero/homoplasmy and mutation threshold are seldom taken into account in this debate. Mitochondrial DNA (mtDNA) mutations generally have been claimed to be protumorigenic, but they are also hallmarks of mostly benign oncocytic tumors wherein they help reduce ...

متن کامل

بررسی فراوانی جهش های DNA میتوکندریایی در دیابت نوع دو

Background: Mitochondria is one of the intracellular organelle with specific DNA. Some diseases caused by mtDNA mutations have been reported up to now. Mutation of A3243G and deletion of 5kb are two of them that related to Diabetes type II. The aim of this study was to evaluate the frequency of A3243G mutation and 5kb mt DNA deletion in type II diabetic patients.Methods: The DNA extracted from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018